
From dosemeter development to routine use – Standards and Uncertainties – RAP25-16

Rolf Behrens & Oliver Hupe

ORCiD: 0000-0002-4905-7791

PTB, Department "Radiation protection dosimetry" (6.3)

Hyperlinks underlined and in light blue

RAP Int. Conf. on Radiation and Applications Crete 2025, May

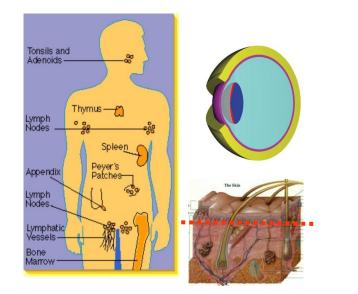
The concept of dosimetry

Standardization

- Structures
- Reference radiation fields
- Dosemeters
 Type tests and Uncertainties
- Calibration and routine tests

Conclusions

The concept of dosimetry

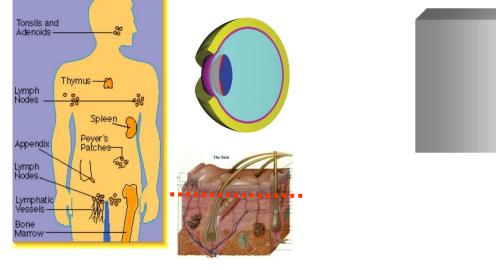

Standardization

- Structures
- Reference radiation fields
- Dosemeters
 Type tests and Uncertainties
- Calibration and routine tests

Conclusions

PTB Dosimetry in radiation protection: the concept

Quantities "spread over the body" (finite size of organs) – by definition NOT measurable



FRP Protection quantities E, H_{T} : limits

Dosimetry in radiation protection: the concept

Quantities "spread over the body" (finite size of organs) – by definition NOT measurable

Point quantities (defined in infinitesimally small point) by definition measurable

5


ICRU 4-element tissue

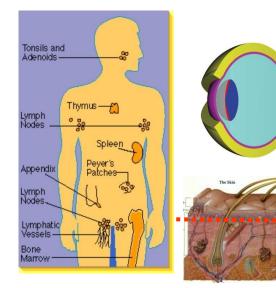
Protection quantities E, H_{T} : limits

Dosimetry in radiation protection: the concept

Quantities "spread over the body" (finite size of organs) – by definition NOT measurable

Point quantities (defined in infinitesimally small point) by definition measurable

ICR? **Protection quantities** E, H_{T} : limits



6

Dosimetry in radiation protection: the concept

Quantities "spread over the body" (finite size of organs) – by definition NOT measurable

Point quantities (defined in infinitesimally small point) by definition measurable

ICRP **Protection quantities** E, H_{T} : limits

Devices Indicated value

PTB Dosimetry in radiation protection: the concept

Quantities "spread over the body" (finite size of organs) – by definition NOT measurable

fonsils and

Point quantities (defined in infinitesimally small point) – by definition measurable

Adenoids

Appropriate definition of measuring (operational) quantities

Protection quantities E, H_{T} : limits

S Measuring quantities

Devices Indicated value

Type test and calibration

 \approx

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter developme

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute Crete 2025, May 8

PB Dosimetry in radiation protection: standards

How can we ensure that devices measure correctly?

- Type tests and calibration/verification
 - \rightarrow Requirements to dosemeters in IEC and ISO standards
- Comparable and traceable measurements/tests
 - \rightarrow Reference radiation fields in ISO and IEC standards

The concept of dosimetry

Standardization

- Structures → ... to give an overview ...
- Reference radiation fields
- Dosemeters
 Type tests and Uncertainties
- Calibration and routine tests

Conclusions

Structures in Standardization

	Standards on procedures	Standards on performance requirements for instruments	
International level: production of most standards	International Organization for Standardization: <u>TC85 – SC2</u> : Radiological protection WG 2: Reference radiation fields WG 19: Individual monitoring	International Electrotechnical Commission <u>TC45 – SC45B</u> : Radiation protection instrumentation WG 8: Active pocket and portable dose (rate) meters and monitors and passive dosimetry systems	
European region: adoption of IEC and ISO standards as EN standards on a case by case decision	European Committee for Standardization <u>CEN/TC430</u> : Nuclear energy, nuclear technologies, and radiological protection modifications of ISO standards NOT possible	European Committee for Electrotechnical Standardization CLC/TC45B: Radiation protection instrumentation small modifications of IEC standards possible	
National level: adoption mandatory	adoption in states of the European Union (EU), the	N (PL) etc.: modifications of EN standards NOT possible E European Free Trade Association (EFTA), Turkey dicting national standards must be withdrawn	
Physikalisch-Technische Bund R. Behrens & O. Hupe, PTB 6.3	desanstalt Braunschweig and Berlin From dosemeter development to routine use – RAP25-	National Metrology Institute 16 RAP Int. Conf. on Rad. and Appl. Crete 2025, May 11	

PTB Structures in Standardization

	Standards on procedures	Standards on performance requirements for instruments	
International level: production of most standards	International Organization for Standardization: International Electrotechnical Commission <u>TC85 - SC2</u> : Radiological protection TC45 - SC45B: WG 2: Reference radiation fields Radiation protection instrumentation WG 19: Individual monitoring WG 8: Active pocket and portable dose (rate) meters and monitors and passive dosimetry systems		
Gulf region: adoption of IEC and ISO standards	هيئة التقييس الخليجية GCC StandardIzation Organization <u>https://www.gso.org.sa/en/</u>		
National level: potential adoption	YSMO (YE), KOWSMD (KW), QS (QA), DGS	K (OM), SASO (SA), BSMD (BH), MoIAT (AE)	

PTB Structures in Standardization

		Standards on performance requirements for instruments	
International level: production of most standards	International Organization for Standardization: <u>TC85 – SC2</u> : Radiological protection WG 2: Reference radiation fields WG 19: Individual monitoring	International Electrotechnical Commission <u>TC45 – SC45B</u> : Radiation protection instrumentation WG 8: Active pocket and portable dose (rate) meters and monitors and passive dosimetry systems	
South Asian region: adoption of IEC and ISO standards	Image: Source of the second secon		
National level: potential adoption	ANSA (AF), BSTI (BD), BSB (BT), BIS (IN), Mo	DED (MV), NBSM (NP), PSQCA (PK), SLSI (LK)	

PTB Structures in Standardization

	Standards on procedures	Standards on performance requirements for instruments	
International level: production of most standards	International Organization for Standardization: <u>TC85 – SC2</u> : Radiological protection WG 2: Reference radiation fields WG 19: Individual monitoring	International Electrotechnical Commission <u>TC45 – SC45B</u> : Radiation protection instrumentation WG 8: Active pocket and portable dose (rate) meters and monitors and passive dosimetry systems	
African region: adoption of IEC and ISO standards	Algeria Libya Egypt Sengra Sengra Guinea Bissou Sengra Chad Sudon Dibouti Bissou Sengra Chad Sudon Dibouti Sengra Sengra Chad Sudon Sudon Sudon Sengra Sengr	African Electrotechnical Standardization Commission	
National level: potential adoption	ARSO MEMBERS MARSO Member Mon ARSO Mem		

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter development

From dosemeter development to routine use – RAP25-16

National Metrology Institute Crete 2025, May 14

RAP Int. Conf. on Rad. and Appl.

The concept of dosimetry

Standardization

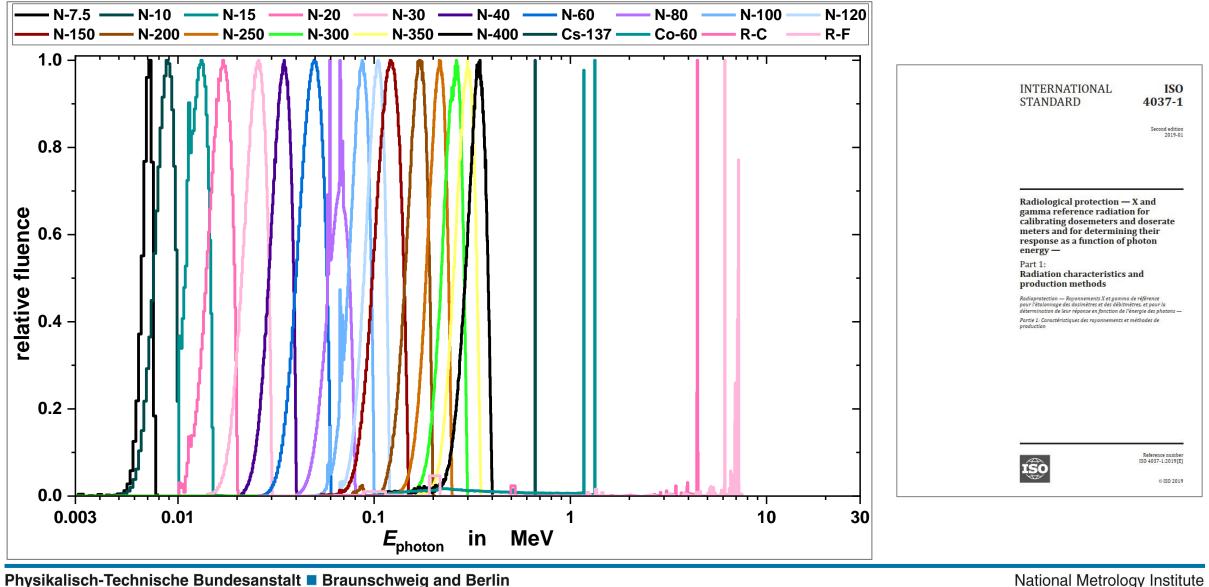
- Structures
- Reference radiation fields -> Primary and secondary standard labs

(PSDL and SSDL)

- Dosemeters
 Type tests and Uncertainties
- Calibration and routine tests

Conclusions

PTB Standards for reference radiation fields – Overview


	Photons	Neutrons	Betas
General standard	ISO 29661:2012 & Amd.1:2015: Reference radiation fields for radiation protection — Definitions and fundamental concepts — <i>Revision in progress</i>		
Characteristics and methods of production	ISO 4037-1: 2019 X-rays, radionuclides, nuclear reactions	ISO 8529-1: 2021 Radionuclides, nucl. react.; updated spectra	ISO 6980-1: 2023 Radionuclides
Primary calibration of the fields; basic quantity	ISO 4037-2: 2019 Air kerma, K a, H	ISO 8529-2:2000 Fluence, Ø Revision planned	ISO 6980-2: 2023 Absorbed dose, D _t Corr. factors simulated
Calibration of dosemeters and their energy and angular response; conversion coefficients from basic quantity to dose equivalent, <i>H</i>	ISO 4037-3: 2019 <i>h</i> _p (0.07), <i>h</i> _p (3), <i>h</i> _p (10) <i>h</i> ' _K (0.07), <i>h</i> ' _K (3), <i>h</i> * _K (10)	ISO 8529-3: 2023 $h_{ m p \phi}(10)$ $h^{*}_{\phi}(10)$	ISO 6980-3: 2023 <i>h</i> _{pD} (0.07), <i>h</i> _{pD} (3) <i>h'</i> _D (0.07), <i>h'</i> _D (3)
Special considerations	ISO 4037-4: 2019 low energy photons		—
Pulsed radiation	ISO TS 18090-1:2015 <i>Revision in progress</i>	ISO TS 18090-2 planned	—

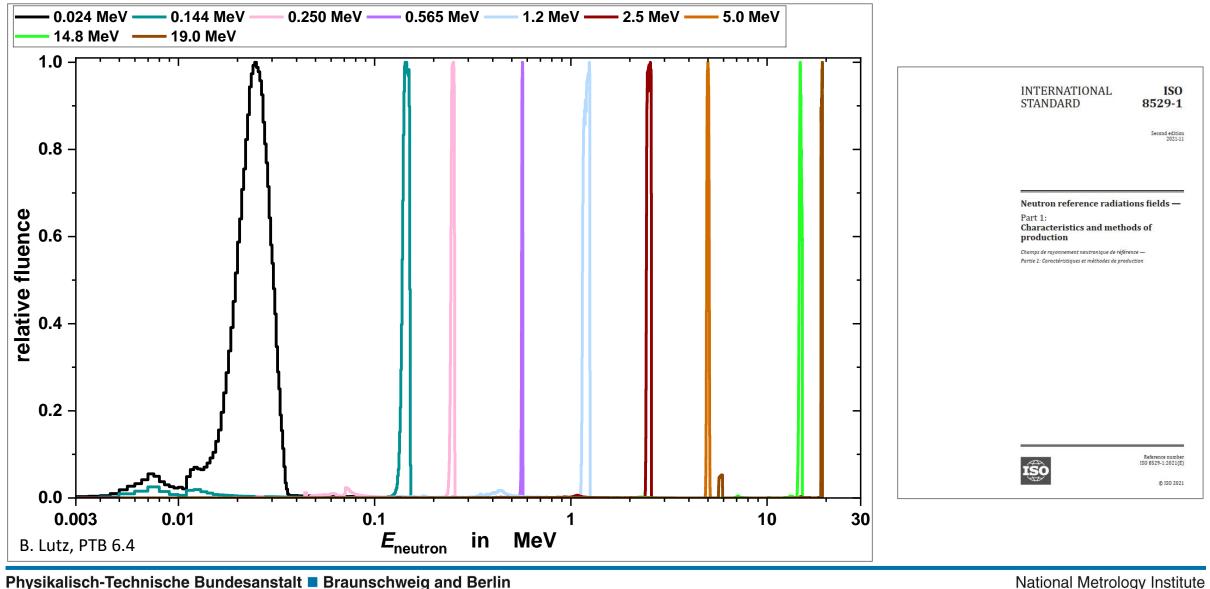
R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute Crete 2025, May 16

Reference radiation fields – Photons (nearly mono-energ.)

R. Behrens & O. Hupe, PTB 6.3

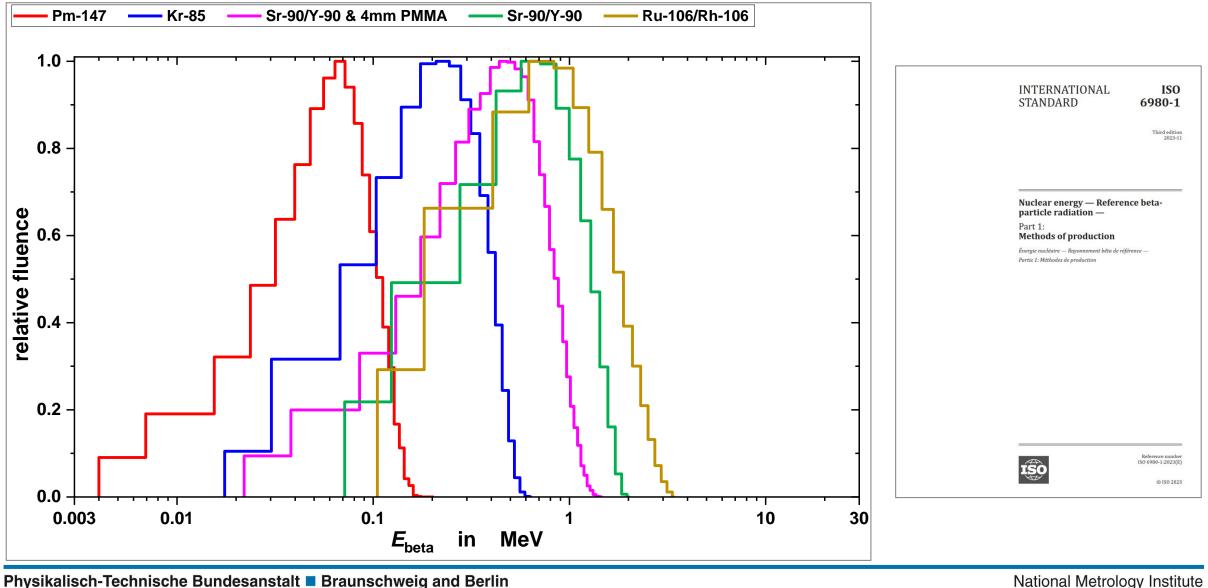

From dosemeter development to routine use – RAP25-16

National Metrology Institute Crete 2025, May

RAP Int. Conf. on Rad. and Appl.

17

PTB Reference radiation fields – Neutrons (mostly mono-energ.)


R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16

National Metrology Institute Crete 2025, May 18

RAP Int. Conf. on Rad. and Appl.

PTB Reference radiation fields – Betas (rather broad)

R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16

National Metrology Institute Crete 2025, May 19

RAP Int. Conf. on Rad. and Appl.

The concept of dosimetry

Standardization

- Structures
- Reference radiation fields
- Dosemeters

 Manufacturers, testing labs and rad. prot. offi. / exp.
 Type tests and Uncertainties (RPO/RPE)
- Calibration and routine tests

Conclusions

Standards for type-tests – for whom?

Manufacturers:

- How secure (malfunction or manipulation accidental or intentional)?
- How good must our dosemeter measure?
- What do we need to document?

Type-test laboratories:

- What to test?
- How to test?
- How to document?

Radiation protection officers / experts (RPOs/RPEs):

- What can a "type-tested" dosemeter measure?
- Does this cover my workplace (radiation type, energy, angle, temperature, ...)?
- How large is its uncertainty?

Who	What happens?	What is addressed?
Manufacturer 🗲	Dosemeter development (prototype)	 Characteristics and quality
Testing lab 🗕	Type test (a few prototype specimens	s) – Relative response ∈ stated limits?
Manufacturer 🗲	Adjustment (each serial copy)	– Absolute response
Authority 🔶	Verification (each serial copy)	– Absolute response
Exposed staff ->	Use of dosemeter	- Dose monitoring
Authority →	Re-Verification (each serial copy)	– Absolute response ∈ stated limits?

Standards for type-tests – Overview

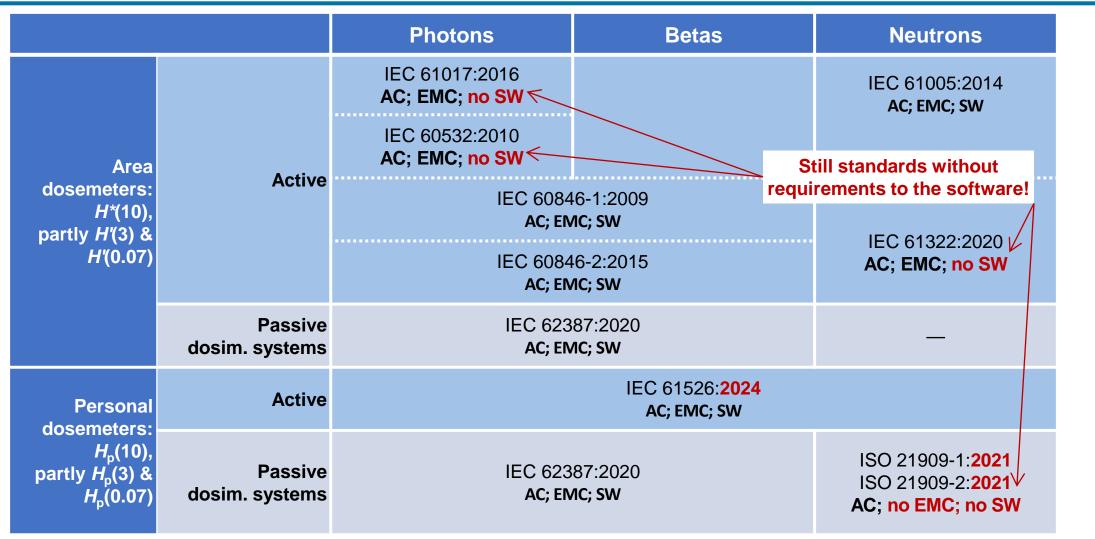
		Photons	Betas	Neutrons
Area dosemeters: <i>H*</i> (10), partly <i>H'</i> (3) & <i>H'</i> (0.07)	Active	IEC 61017:2016 Environm. monitoring		IEC 61005:2014 Rate meters;
		IEC 60532:2010 Fixed inst. in NPPs		 revision in progress → updated techniques
		IEC 60846-1:2009 Portable; <i>revision in progress → H'</i> (3)		IEC 61322:2020
		IEC 60846-2:2015 Emergency: portable and probes		Fixed installed
	Passive dosim. systems	IEC 62387:2020 All quantities – all types incl. hybrid dosemeters		—
Personal	Active	IEC 61526: 2024 All types – incl. hybrid dosemeters and updated neu		eutron requirements
dosemeters: – <i>H</i> _p (10), partly <i>H</i> _p (3) & <i>H</i> _p (0.07)	Passive dosim. systems	IEC 62387:2020 All quantities – all types incl. hybrid dosemeters		ISO 21909-1: 2021 All types ISO 21909-2: 2021 Workplace considerations

List of standards available: <u>https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_6/6.3/information/norm_lst.pdf</u>

Standards for type-tests – Software

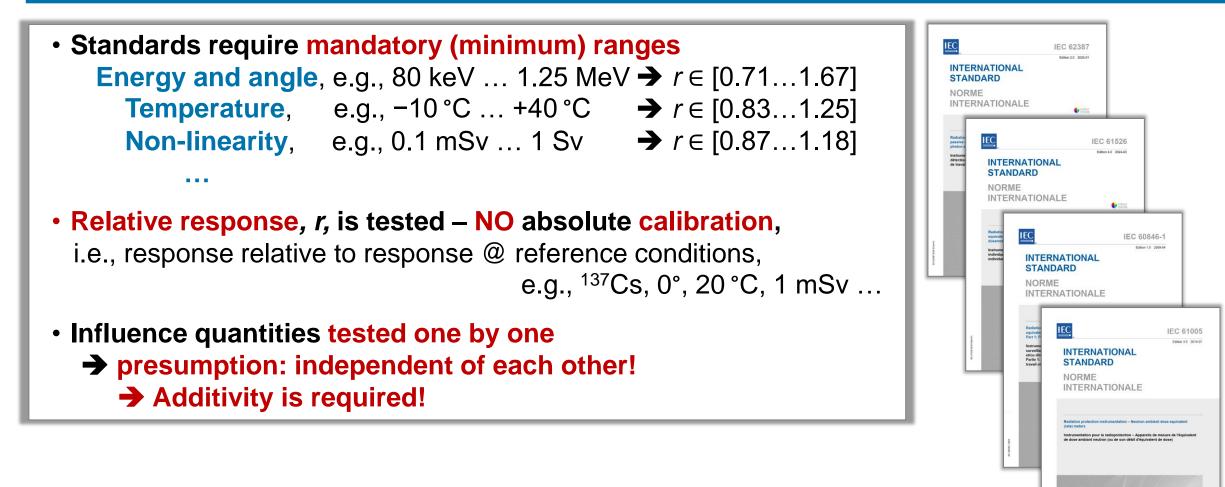
Software ...

- calculates dose
- indicates dose
- transmits data
- ...


... must not be changed during or after test

separate in data relevant (e.g., dose calc.) and non-data relevant part (e.g., font, color)

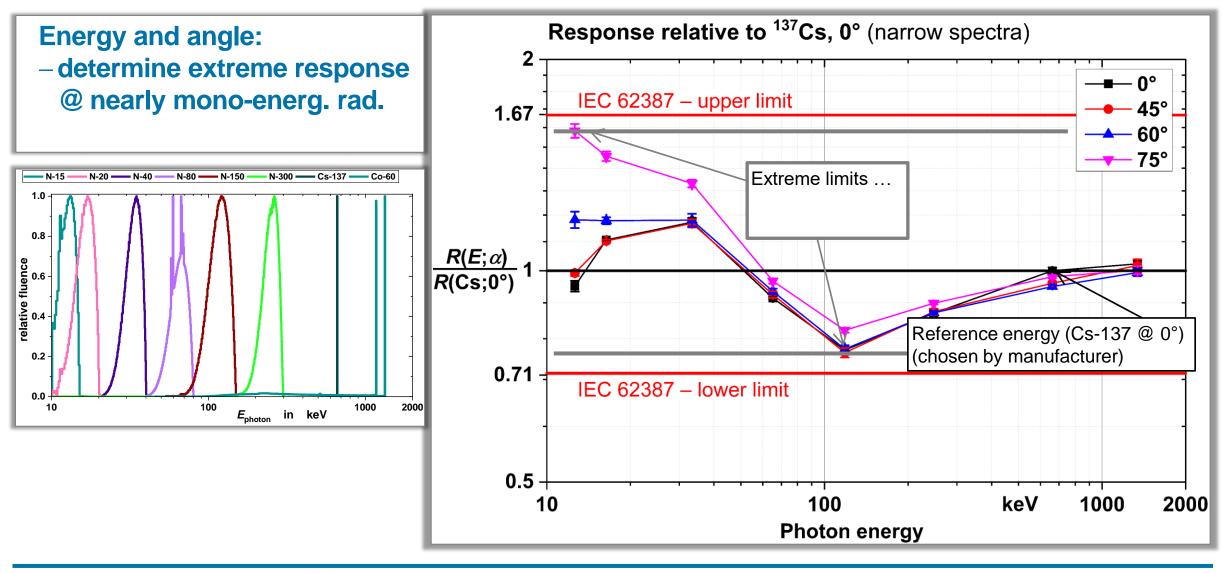
Topics addressed ...


- Identification
- Authenticity
- Data storage and transmission
- Interfaces (hard- and software)
- Documentation
- ...

Ambient conditions (AC), EMC & SW

List of standards available: <u>https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_6/6.3/information/norm_lst.pdf</u>

PTB Standards for type-tests – Procedure (Photons)

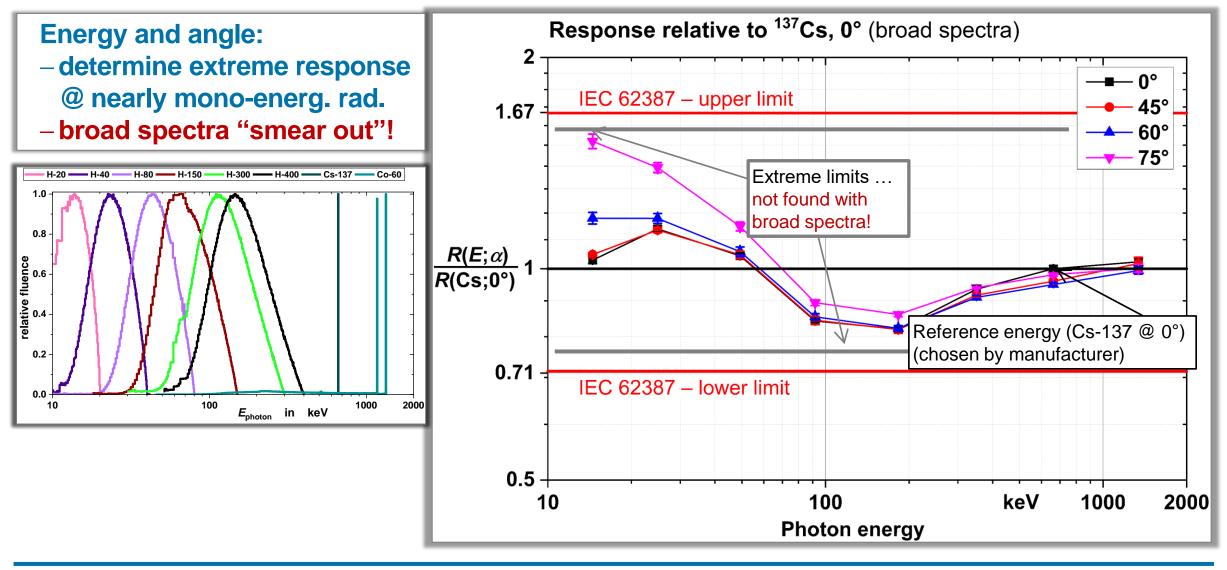


Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
R. Behrens & O. Hupe, PTB 6.3
From dosemeter development to route

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute Crete 2025, May 26

PTB Standards for type-tests – Example: energy and angle

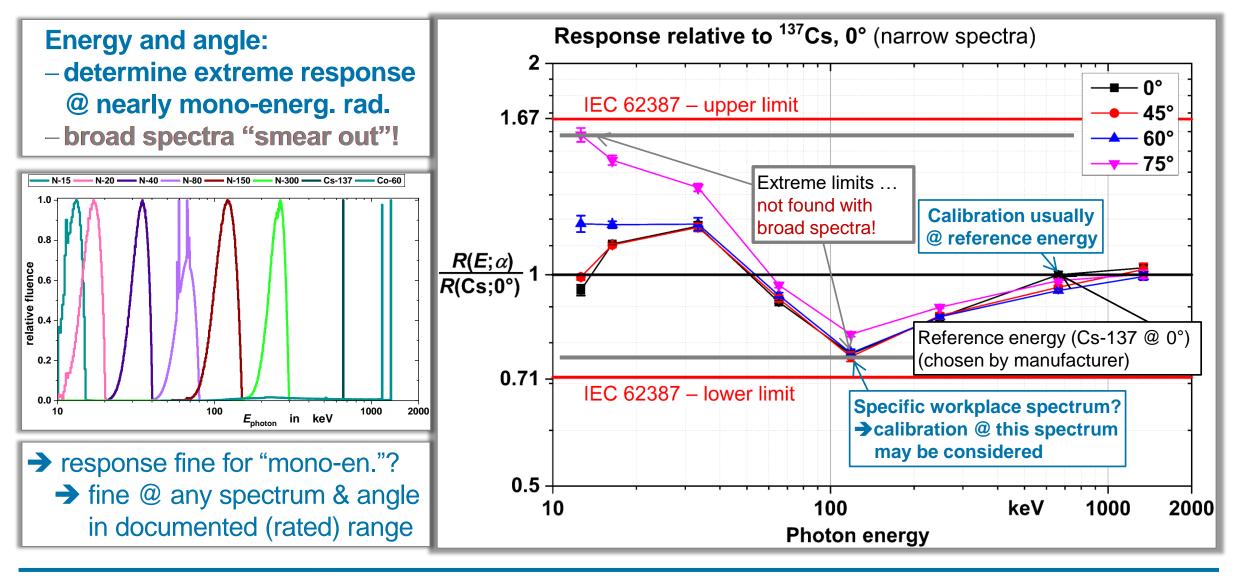


Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter developm National Metrology Institute

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

Crete 2025, May 27

Standards for type-tests – Example: energy and angle



Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl. National Metrology Institute Crete 2025, May

28

PTB Standards for type-tests – Example: energy and angle

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter developm National Metrology Institute

Crete 2025, May

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

29

PB Standards for type-tests – Additivity

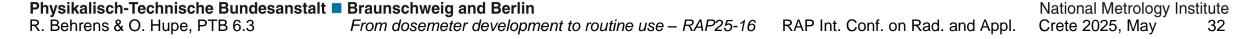
Badge 1 irradiated with H_{E1} ? + = Badge 3 irradiated with H_{E1} & H_{E2} Badge 2 irradiated with H_{E2}

PB Standards for type-tests – Additivity

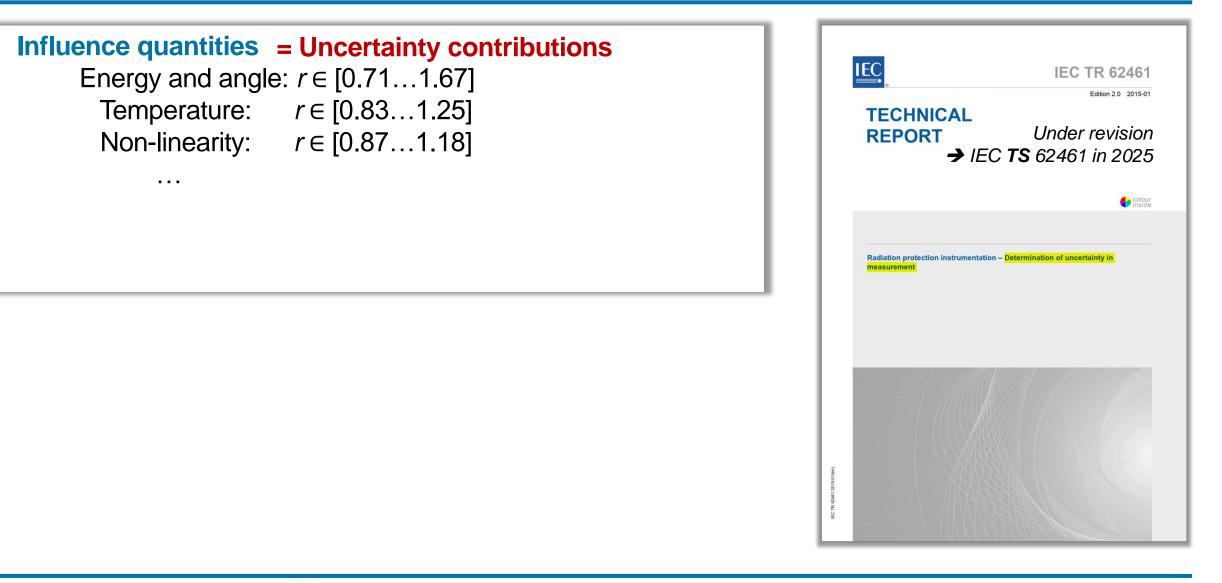
Badge 1 irradiated with H_{E1}	-	
+	=	Badge 3 irradiated with $H_{E1} \& H_{E2}$
Badge 2 irradiated with H_{E2}		

Dosemeter construction	n Method of dose calculation	Additivity fulfilled?
One detector \rightarrow element / signal S	dose ~ signal S	→ yes
Two or more detector 7_{1}	dose \sim linear combination or lin. optimization of signals	→ yes
elements / signals	dose ~ branching algorithm, e.g., $S_1/S_2 > 1 \rightarrow algorithm A$ $S_1/S_2 \le 1 \rightarrow algorithm E$	→ often not → test needed

PB Standards for type-tests – Additivity


Badge 1 irradiated with H_{E1} ? + = Badge 3 irradiated with H_{E1} & H_{E2} Badge 2 irradiated with H_{E2}

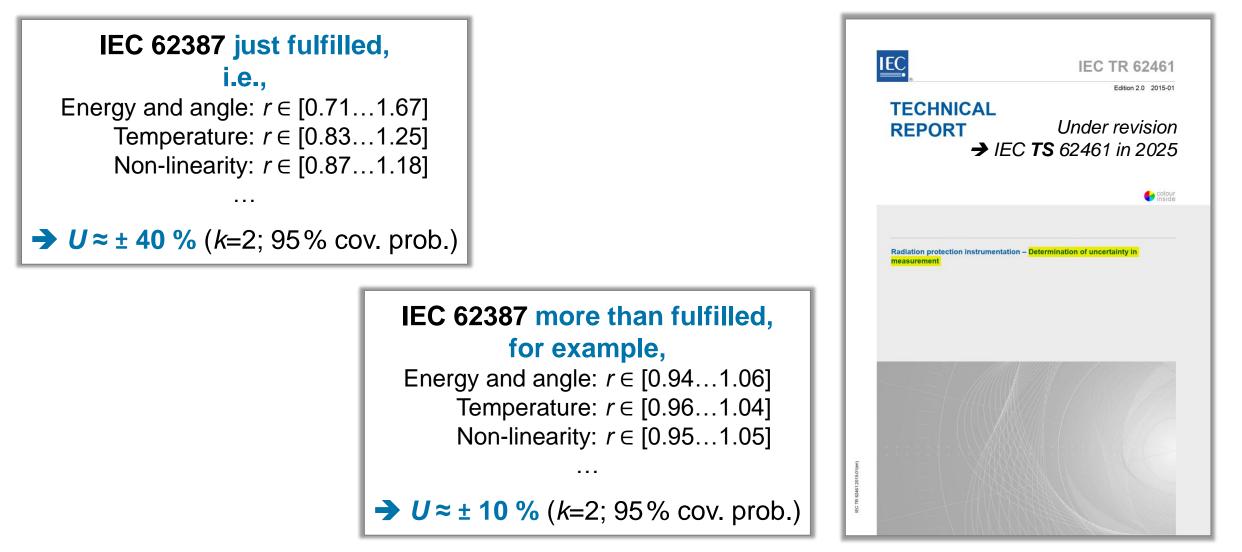
Influence quantities ... not independent of each other ...,


➤ e.g., branching (see above) → test @ mixture of radiation qualities

e.g., linearity depends on energy (often the case for film dosemeters)
 test linearity @ different energies

e.g., coefficient of var. depends on temperature (can the case for active counting detectors)
 test coefficient of variation @ different temperature

PTB Standards for type-tests – Uncertainty



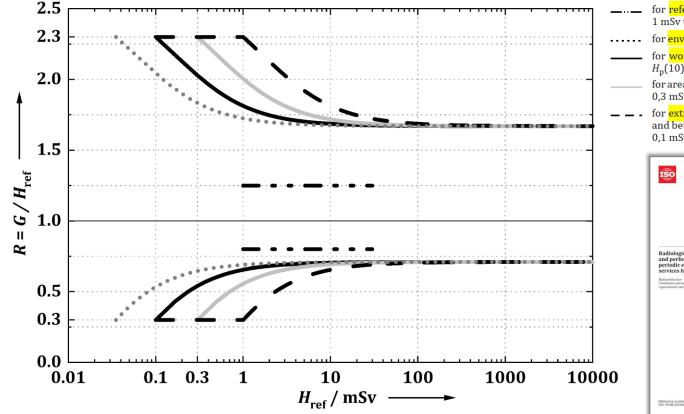
 Physikalisch-Technische Bundesanstalt
 Braunschweig and Berlin
 Nationa

 R. Behrens & O. Hupe, PTB 6.3
 From dosemeter development to routine use – RAP25-16
 RAP Int. Conf. on Rad. and Appl.
 Crete 2

National Metrology Institute Crete 2025, May 33

The concept of dosimetry

Standardization


- Structures
- Reference radiation fields
- Dosemeters
 Type tests and Uncertainties
- Calibration and routine tests

Conclusions

Calibration and routine tests (photons & betas)

ISO 14146:2024: Performance limits for individual monitoring services (IMS)

- → absolute calibration (ph,ß,n) < factor $1.25 \approx R \in 0.8...1.25$: test @ reference energy
- → overall performance (ph,ß) \leq factor 1.5 (ICRP 75) \approx $R \in 0.71...1.67$: (usually) with broad spectra (routine)

for reference conditions for neutrons and photons (with $\bar{E} > 10$ keV) and betas (with $\bar{E} > 0.2$ MeV): 1 mSv to 30 mSv_

- for environmental $H^*(10)$ dosemeters for neutrons and photons (with $\overline{E} > 10$ keV): 0,035 mSv to 10 Sv
- for workplace $H^*(10)$ dosemeters for neutrons and photons (with $\overline{E} > 10$ keV) and for whole-body $H_p(10)$ dosemeters for photons (with $\overline{E} > 10$ keV): 0,1 mSv to 10 Sv

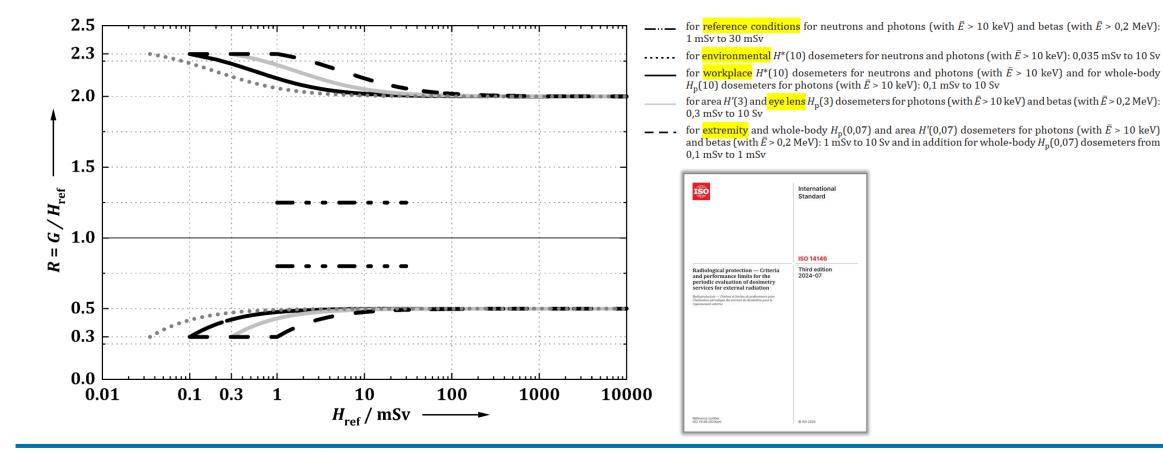
for area H'(3) and evelens $H_p(3)$ dosemeters for photons (with $\overline{E} > 10$ keV) and betas (with $\overline{E} > 0,2$ MeV): 0,3 mSv to 10 Sv

- for extremity and whole-body $H_p(0,07)$ and area H'(0,07) dosemeters for photons (with $\overline{E} > 10 \text{ keV}$) and betas (with $\overline{E} > 0,2 \text{ MeV}$): 1 mSv to 10 Sv and in addition for whole-body $H_p(0,07)$ dosemeters from 0,1 mSv to 1 mSv

RAP Int. Conf. on Rad. and Appl.

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

R. Behrens & O. Hupe, PTB 6.3


From dosemeter development to routine use – RAP25-16

National Metrology Institute Crete 2025. May 36

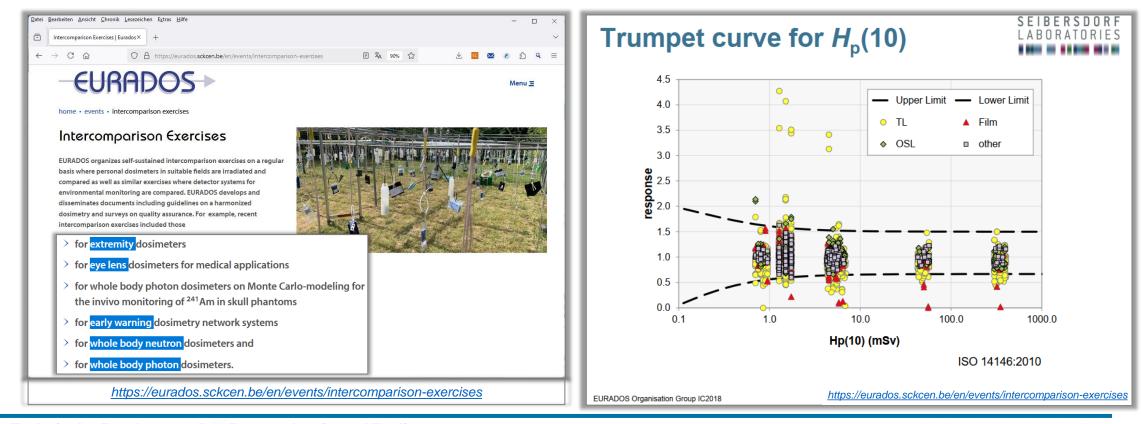
Calibration and routine tests (neutrons)

ISO 14146:2024: Performance limits for individual monitoring services (IMS)

- → absolute calibration (ph,ß,n) < factor $1.25 \approx R \in 0.8...1.25$: test @ reference energy
- → overall performance (neutrons) \leq factor 2 (ICRP 75) \approx R \in 0.5...2.0: (usually) with broad spectra (routine)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter developm

From dosemeter development to routine use – RAP25-16


National Metrology Institute Crete 2025. May 37

RAP Int. Conf. on Rad. and Appl.

Calibration and routine tests

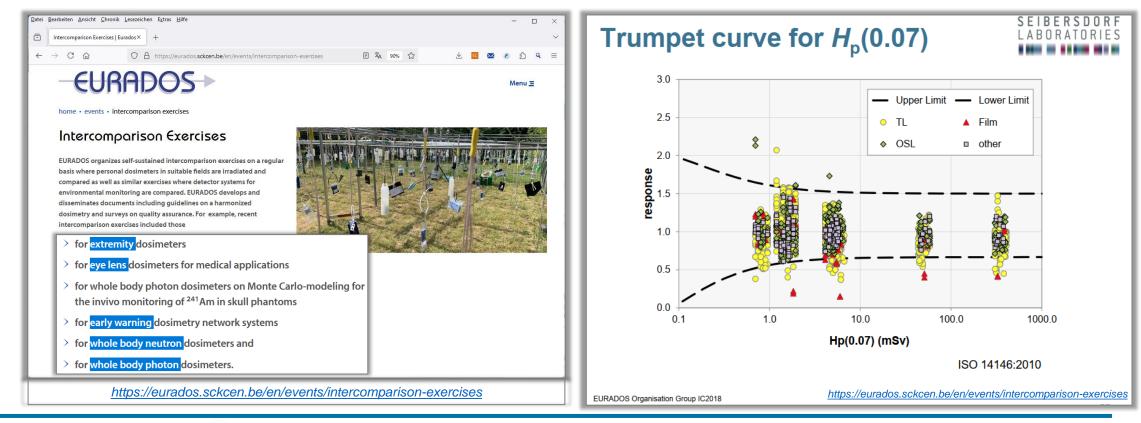
ISO 14146:2024: Performance limits for individual monitoring services (IMS)

- → absolute calibration (ph,ß,n) < factor $1.25 \approx R \in 0.8...1.25$: test @ reference energy
- \rightarrow overall performance (ph,ß) \leq factor 1.5 and (n) \leq factor 2 (ICRP 75)
 - demonstrated by many EURADOS (WG2,WG3) intercomparisons (a success story...)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute


Crete 2025. Mav

38

Calibration and routine tests

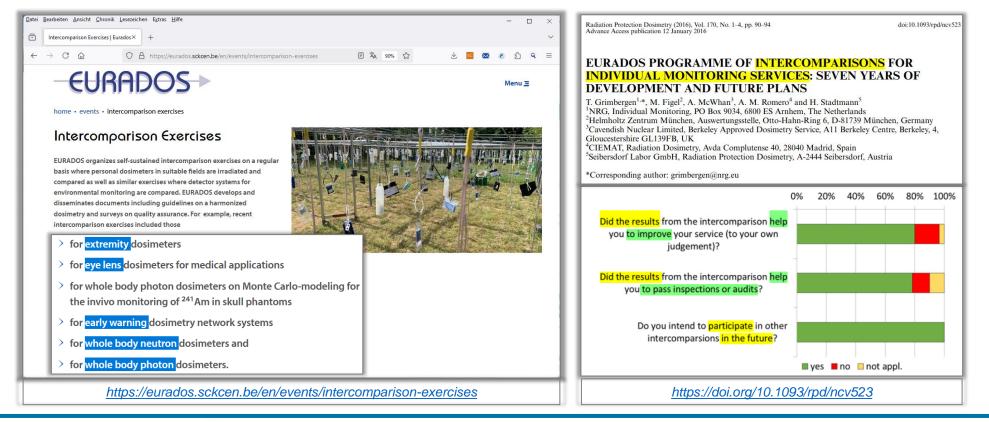
ISO 14146:2024: Performance limits for individual monitoring services (IMS)

- → absolute calibration (ph,ß,n) < factor $1.25 \approx R \in 0.8...1.25$: test @ reference energy
- → overall performance (ph,ß) \leq factor 1.5 and (n) \leq factor 2 (ICRP 75)
 - demonstrated by many EURADOS (WG2,WG3) intercomparisons (a success story...)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter developm

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute


39

Crete 2025. Mav

Calibration and routine tests

ISO 14146:2024: Performance limits for individual monitoring services (IMS)
 → absolute calibration (ph,ß,n) < factor 1.25 ≈ R ∈ 0.8...1.25: test @ reference energy
 → overall performance (ph,ß) ≤ factor 1.5 and (n) ≤ factor 2 (ICRP 75)

demonstrated by many EURADOS (WG2,WG3) intercomparisons (a success story...)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe. PTB 6.3 From dosemeter developm

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute Crete 2025. May 40

The concept of dosimetry

Standardization

- Structures
- Reference radiation fields
- Dosemeters
 Type tests and Uncertainties
- Calibration and routine tests

Conclusions

Conclusions

- Production of most standards at international level
- Adoption at regional and national level → (e.g., EN and DIN) standards
 - → contribution at international level is most influential
- Type-test standards → demonstrate performance of a dosemeter in rated ranges
 → RPO/RPE: workplace in rated ranges?
- Calibration @ reference energy or workplace spectrum advisable
 ➢ Uncertainty (*k*=2; 95% cov. prob.) ∈ ICRP 75 (*R*_{photon.beta} ≤ factor 1.5; *R*_{neutron} ≤ factor 2))!
- Overall performance to be demonstrated (intercomparisons)
- List of standards is available at PTB's website: <u>http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_6/6.3/information/norm_lst.pdf</u>

Physikalisch-Technische BundesanstaltBraunschweig and BerlinNational Metrology InstituteR. Behrens & O. Hupe, PTB 6.3From dosemeter development to routine use – RAP25-16RAP Int. Conf. on Rad. and Appl.Crete 2025, May42

From dosemeter development to routine use – Standards and Uncertainties – RAP25-16

Rolf Behrens & Oliver Hupe

ORCiD: 0000-0002-4905-7791

IN PHYSICS, CHEMISTRY, BIOLOGY, MEDICAL SCIENCES

ENVIRONMENTAL SCIENCES

ENGINEERING AND

26-30, 2025 | Hellenic Centre of Marine Research | Gournes - Heraklion | Crete | Greece

PTB, Department "Radiation protection dosimetry" (6.3)

NFERENCE

ON RADIATION

APPLICATIONS

Hyperlinks underlined and in light blue

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Bundesallee 100 38116 Braunschweig

GERMANY

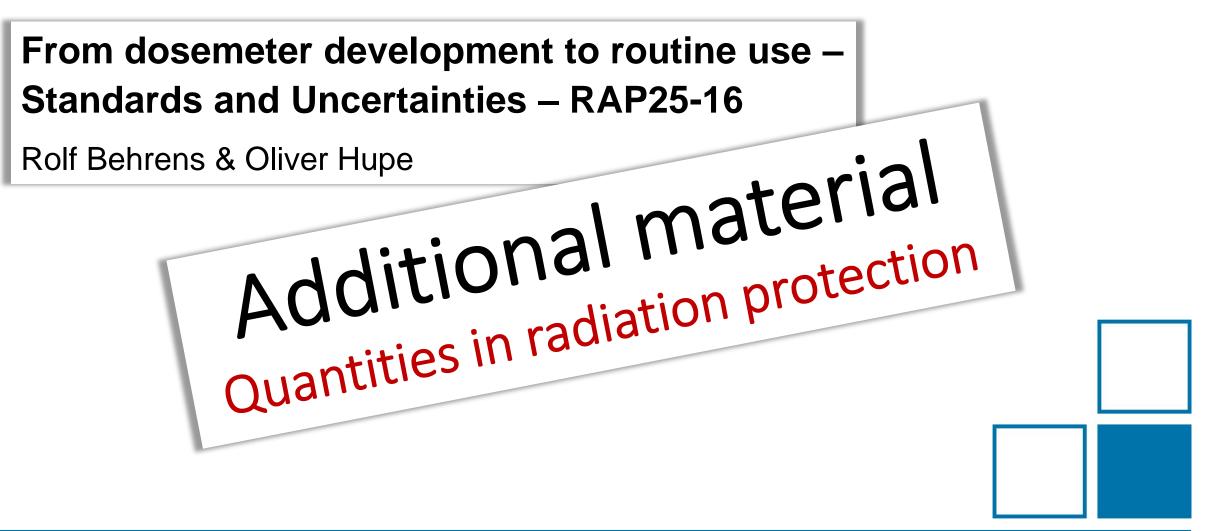
Dr. Rolf Behrens Phone: +49 531 592-6340 E-mail: <u>Rolf.Behrens@PTB.de</u>

www.ptb.de

05/2025

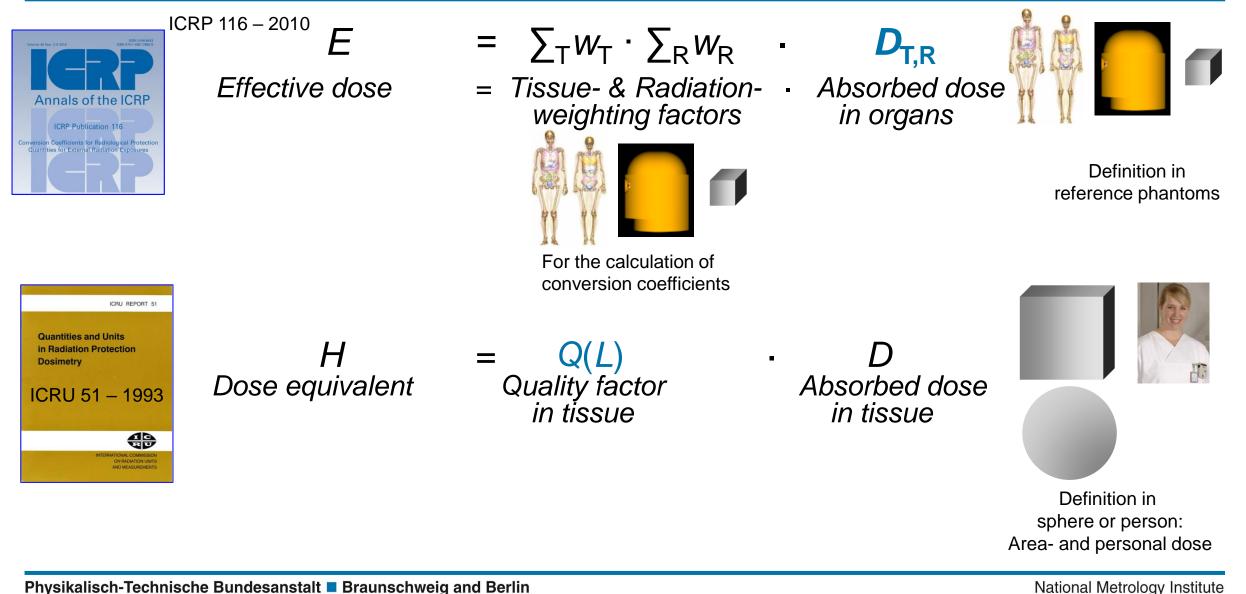
Physikalisch-Technische Bundesanstalt Braunschweig and Berlin R. Behrens & O. Hupe, PTB 6.3 From dosemeter developm

From dosemeter development to routine use – RAP25-16


ise – RAP25-16 RAP Int. Conf. on Rad. and Appl.

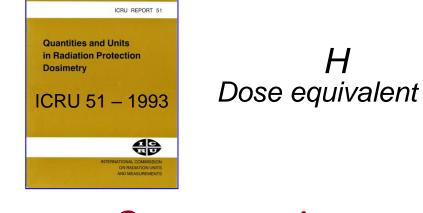
National Metrology Institute

43


Crete 2025, May

RAP Int. Conf. on Radiation and Applications Crete 2025, May

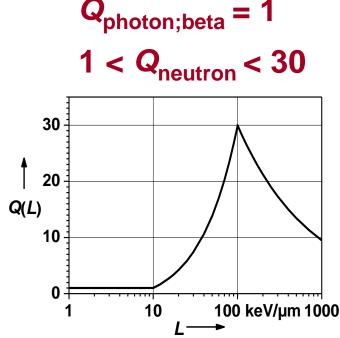
PTB Protection vs. measuring quantities



R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

Crete 2025, May 45


PB Measuring quantities: definition

Q(L) Quality factor in tissue

D Absorbed dose in tissue

Q: Quality factor to take into account the biological effectiveness depending on the quality of the radiation

- Q(L) is a function of a physical quantity
- L is the linear energy transfer (in keV/µm) in water
- L can be measured with Tissue Equivalent Proportional Counters (TEPC)

 Physikalisch-Technische Bundesanstalt
 Braunschweig and Berlin

 R. Behrens & O. Hupe, PTB 6.3
 From dosemeter development to routine use – RAP25-16
 RAP Int. Conf. on Rad. and Appl.

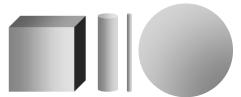
PB Measuring quantities: realization

Quantities and Units in Radiation Protection Dosimetry

ICRU 51 - 1993

ICRU REPORT 51

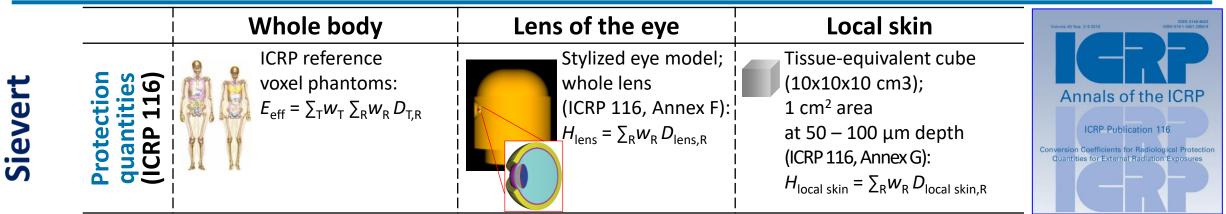
ICRU REPORT 57

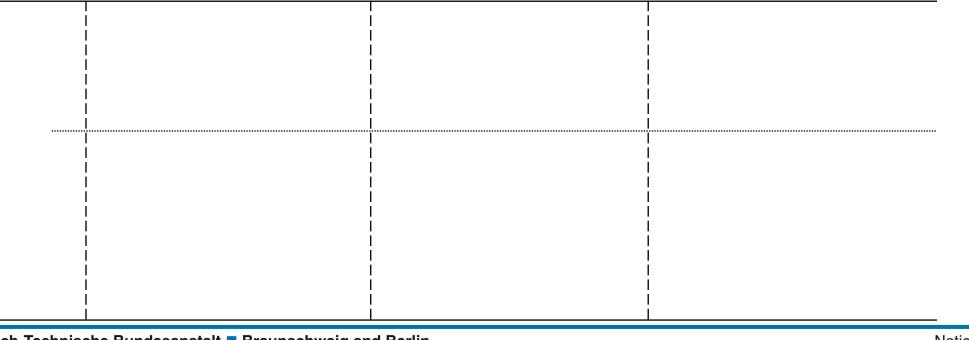

40

H Dose equivalent Q(L) Quality factor in tissue D Absorbed dose in tissue

Conversion Coefficients for use in Radiological Protection Against External Radiation

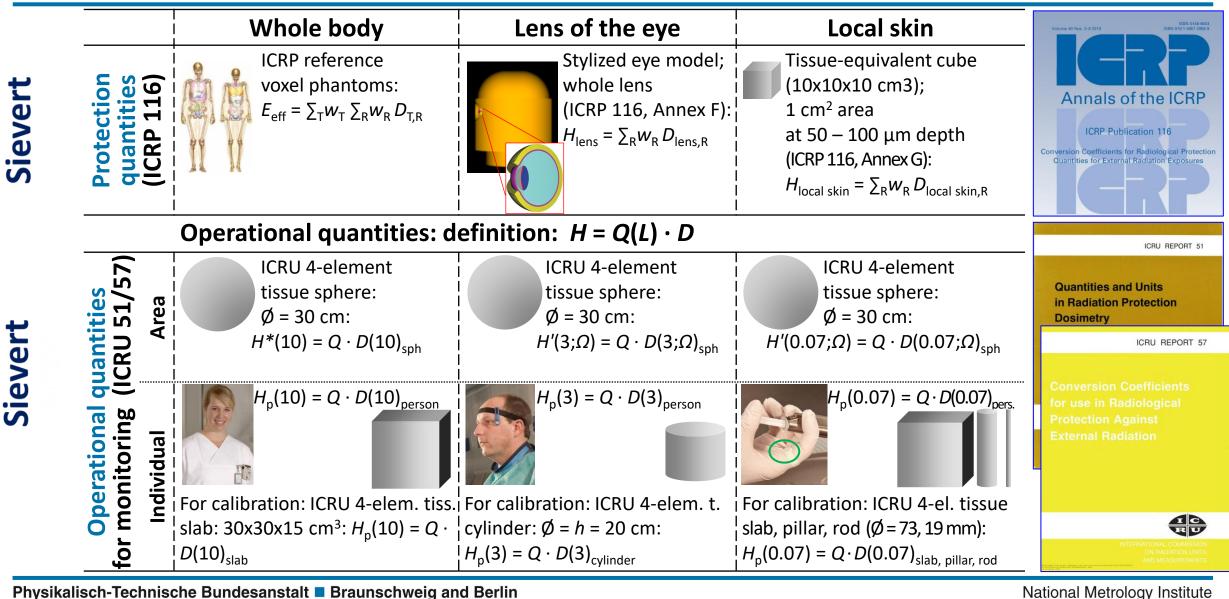
ICRU 57 – 1998


For representation = h Conversion coefficient



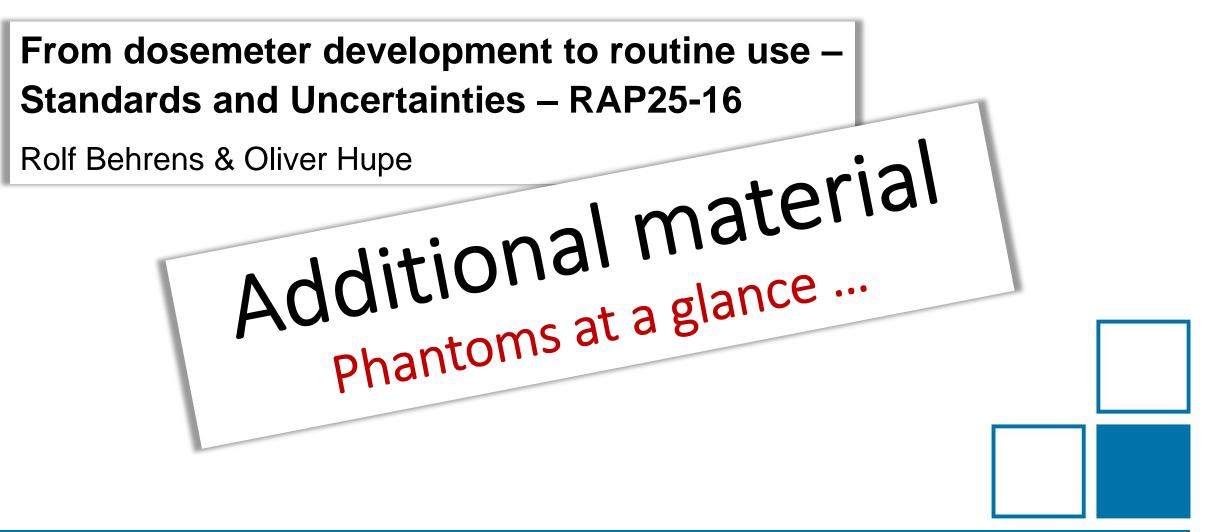
Φ bzw. K_a
 Fluence or air kerma in air

Physikalisch-Technische BundesanstaltBraunschweig and BerlinNational Metrology InstituteR. Behrens & O. Hupe, PTB 6.3From dosemeter development to routine use – RAP25-16RAP Int. Conf. on Rad. and Appl.Crete 2025, May47


PTB Protection vs. measuring quantities

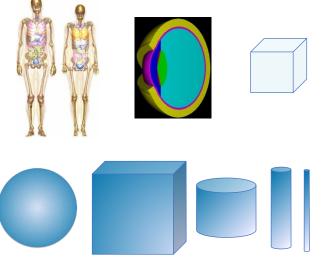
Physikalisch-Technische BundesanstaltBraunschweig and BerlinNational Metrology InstituteR. Behrens & O. Hupe, PTB 6.3From dosemeter development to routine use – RAP25-16RAP Int. Conf. on Rad. and Appl.Crete 2025, May48

PB Protection vs. measuring quantities



R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.


National Metrology Institute Crete 2025, May 49

RAP Int. Conf. on Radiation and Applications Crete 2025, May

PB Phantoms and their purpose - at a glance

(For calculation of conversion coefficients for calibrations)

Phantoms for the calculation of protection quantities

- > Anthropomorphic voxel, eye, and skin phantoms from ICRP
- To calculate the absorbed dose to the organ and the effective dose

Phantoms for the calculation of operational quantities

- > Defined by the ICRU, consisting of ICRU 4-element tissue
- To calculate the conversion coefficients
- ICRU sphere (30 cm diameter) for area dosimetry
- ICRU slab/cylinder/pillar/rod phantom for personal dosimetry
- > No realization required

Phantoms for type tests and calibrations

- defined by ISO, made from PMMA and water
- Simulate the backscattered radiation field
- ISO water slab phantom (with PMMA walls)
- ISO water cylinder phantom (with PMMA walls)
- ISO water pillar phantom (with PMMA walls)
- ISO PMMA rod phantom
- Calibration of area dosemeters without phantoms

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

R. Behrens & O. Hupe, PTB 6.3

From dosemeter development to routine use – RAP25-16 RAP Int. Conf. on Rad. and Appl.

National Metrology Institute Crete 2025, May 51