

EXPLORING THE COLOR MODIFICATIONS IN BIOPOLYMERS INDUCED BY DUAL PROCESSING WITH IONIZING RADIATION AND COLD PLASMA

Mirela BRAŞOVEANU, Monica R. NEMŢANU*

National Institute for Laser, Plasma and Radiation Physics, Electron Accelerator Laboratory, Bucharest-Magurele, Romania *monica.nemtanu@inflpr.ro

INTRODUCTION

- Ionizing radiation and cold plasma treatments \rightarrow promising non-thermal, environmentally friendly practices that may change the functionality of natural polymers
- Recent research in the field of in the field of biopolymer modification \rightarrow dual modification by combining different modification methods to enhance the biopolymer physicochemical and functional features while optimizing performance
- Starch → modified to enhance its functionality and to extend its utilization
- Assessing color parameters ⇒ understanding of changes in biopolymer properties, optimizing processing conditions, and meeting consumer preferences

METHODOLOGY

Material: Native regular corn starch (white powder; moisture content: ≤15%)

- Processing:
- 1. RF plasma (RF): 40 W, 150 mTorr, 10 min, in air
- 2. Electron Beam Irradiation (EBI): 5.5 MeV; 5-20 kGy; 2.9±0.2 kGy/min
- 3. RF/EBI
- 4. EBI/RF

AIM

to explore the impact of dual processing with an electron beam and cold plasma, varying the processing sequences, on the color attributes of starch as a biopolymer.

Spectrophotocolorimetric measurements:

- Absorbance in the visible region (360-830 nm), standard illuminant D65 (daylight source), observer angle of 10° (perception angle of a human observer) ⇒ two color spaces: CIE L*a*b* and CIE L*C*h°
- Cary 100 Bio spectrophotometer (Varian, Inc., USA)
- Gelatinized starch 1% (w/v)
- Total color difference $\Delta E_{ab} \rightarrow$ reference for calculated values: native starch

Statistics: Hierarchical cluster analysis (HCA) (OriginPro 2017): Ward's method, Euclidean distance, sum of distance, normalized variables to [0,1]

RESULTS

**

12

 ΔE_{ab} 9

Total color difference,

6

system

6

Red-green coordinate,

Dual-modified samples $\rightarrow L^*, +a^*, +b^* \nearrow$

Lightness, L^* : 0 (black) \rightarrow 100 (white); Red-green coordinate, $a^*: +a^* \rightarrow \text{red}, -a^* \rightarrow \text{green}$ CIE L*a*b* ⇔ Yellow-blue coordinate, $b^*: +b^* \rightarrow$ yellow, $b^* \rightarrow$ blue

16

Lightness,L

10 (%)

8

Total color difference, $\Delta E_{ab} = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2}$

Native starch \rightarrow a relatively neutral color, slightly yellowish: yellow (+*b**) & red (+*a**) with a low *L** (~8%)

coordinate,

Red-greer

with irradiation dose $\rightarrow +a^*$: the largest change in values among $L^*a^*b^*$ coordinates CIE $L^*C^*h^\circ \Rightarrow$ system

Lightness, $L^*: 0$ (black) $\rightarrow 100$ (white) Chroma (saturation), C* - quantitative component Hue, h° - qualitative component: 0° (red), 90° (yellow), 180° (green), 270° (blue)

Dual-modified samples $\rightarrow C^* \nearrow$ with irradiation dose \rightarrow ho: shifted toward red

 \rightarrow C*: the largest change in values among L*C*h^o coordinates

10 Irradiation dose, D (kGv)

Sample classification (dendrogram)

4 clusters at a <u>cut-off = 1.125</u>, according to the type/level of processing:

EBI RF/EBI

Cluster 1: Non-irradiated samples (native & RF-modified starches) Cluster 2: EBI- & dual-modified samples, irradiated with the lowest irradiation dose Cluster 3: Single-irradiated samples at irradiation doses ≥ 10 kGy

Cluster 4: Dual-modified samples at irradiation doses ≥ 10 kGy

CONCLUSIONS

10

Irradiation dose, D (kGy)

5

perceptible change

15

20

- Dual processing -> significantly altered starch color parameters, primarily based on irradiation dose
- Dual-processed samples --> perceptible color changes, though less than EBI alone at the same irradiation dose
- □ Clustering --> samples categorized by the type/level of processing

This work was supported by (1) the Romanian Ministry of Research, Innovation and Digitalization under Romanian National Core Program LAPLAS VII - contract no. 30N/2023 and (2) a grant of the Romanian Ministry of Research, Innovation and Digitalization CNCS-UEFISCDI, project number PNIIIP4PCE20211778, within PNCDI III. vledement: This